k-Modules Over Linear Spaces by n-Linear Maps Admitting a Multiplicative Basis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular parcial linear spaces admitting (1;≤ k)-identifying codes

Let (P ,L, I) be a partial linear space and X ⊆ P ∪ L. Let us denote by (X)I = ⋃ x∈X{y : yIx} and by [X ] = (X)I ∪ X . With this terminology a partial linear space (P ,L, I) is said to admit a (1,≤ k)-identifying code if and only if the sets [X ] are mutually different for all X ⊆ P ∪L with |X | ≤ k. In this paper we give a characterization of k-regular partial linear spaces admitting a (1,≤ k)...

متن کامل

ADMITTING CENTER MAPS ON MULTIPLICATIVE METRIC SPACE

‎In this work‎, ‎we investigate admitting center map on multiplicative metric space‎ ‎and establish some fixed point theorems for such maps‎. ‎We modify the Banach contraction principle and‎ ‎the Caristi's fixed point theorem for M-contraction admitting center maps and we prove some‎ ‎useful theorems‎. ‎Our results on multiplicative metric space improve and modify‎ ‎s...

متن کامل

Solving System of Linear Congruence Equations over some Rings by Decompositions of Modules

In this paper, we deal with solving systems of linear congruences over commutative CF-rings. More precisely, let R be a CF-ring (every finitely generated direct sum of cyclic R-modules has a canonical form) and let I_1,..., I_n be n ideals of R. We introduce congruence matrices theory techniques and exploit its application to solve the above system. Further, we investigate the application of co...

متن کامل

Componentwise Linear Modules over a Koszul Algebra

In this paper we devote to generalizing some results of componentwise linear modules over a polynomial ring to the ones over a Koszul algebra. Among other things, we show that the i-linear strand of the minimal free resolution of a componentwise linear module is the minimal free resolution of some module which is described explicitly for any i ∈ Z. In addition we present some theorems about whe...

متن کامل

On multiplicative (strong) linear preservers of majorizations

‎In this paper, we study some kinds of majorizations on $textbf{M}_{n}$ and their linear or strong linear preservers. Also, we find the structure of linear or strong linear preservers which are multiplicative, i.e.  linear or strong linear preservers like $Phi $ with the property $Phi (AB)=Phi (A)Phi (B)$ for every $A,Bin textbf{M}_{n}$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebras and Representation Theory

سال: 2018

ISSN: 1386-923X,1572-9079

DOI: 10.1007/s10468-018-9790-8